skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moxley, Dylan R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Populations declining due to climate change may need to evolve to persist. While evolutionary rescue has been demonstrated in theory and the lab, its relevance to natural populations facing climate change remains unknown. Here we link rapid evolution and population dynamics in scarlet monkeyflower,Mimulus cardinalis, during an exceptional drought. We leverage whole-genome sequencing across 55 populations to identify climate-associated loci. Simultaneously we track demography and allele frequency change throughout the drought. We establish range-wide population decline during the drought, geographically variable rapid evolution, and variable population recovery that is predictable by both standing genetic variation and rapid evolution at climate-associated loci. These findings demonstrate evolutionary rescue in the wild, showing that genomic variability at adaptive, but not neutral loci, predicts population recovery. 
    more » « less
  2. Abstract Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studiedPoecilia mexicanapopulations that have repeatedly adapted to extreme sulphidic (H2S‐containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium‐wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes. 
    more » « less